

As part of our ongoing efforts to support utilities in exploring innovative and reliable energy storage solutions, we have compiled a set of battery manufacturer profiles that may be of interest to your organization. These profiles highlight potential domestic suppliers with relevant offerings, operational capabilities, and market presence.

Contact Sheet

Click Profile You Wish to Look at Alsym Energy Ambri EnerVault EnerVenue EoS Energy Enterprises ESS Form Energy Natron Energy PolyJoule Quino Energy Ohm ViZn Glossary

Rattory	Drafila
Rattory	Urntild

Battery Profile		
Attribute	Details Description	Details
General Information		
•	[Enter Battery Name]	Alsym Energy Battery
	[Company Name]	Alsym Energy
Reviewed by Manufacturer		FALSE
for accuracy	reviewed this document]	
BABA	[Build America, Buy America Act (2021)	
Year Introduced		
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Non-lithium rechargeable battery
Chemistry	[Describe the electrochemical reaction]	
		Water-based, metal-free chemistry (proprietary)
Physics	[Explain the working	Uses a novel electrochemical system with non- toxic materials to store and release energy
PHYSICS	mechanism]	efficiently
	[e.g., Grid Storage, EVs,	Grid storage, maritime, residential, and industrial
Use Cases	Residential, Industrial]	applications
Physical Characteristics		
Footprint	[Size of installation /	
i ootprint	space required]	
Size Range	[e.g., 5 kWh to 1 MWh]	Expected to cover small-scale to large-scale storage needs
Weight	[kg or lbs]	storage needs
Performance & Capacity		
	[kWh or MWh]	Designed for medium-to-large-scale energy storage
Rate of Charge	[e.g., 1C = full charge in 1 hour]	
Rate of Discharge	[e.g., 0.5C = 2-hour	
Rate of Discharge	discharge]	
Round-Trip Efficiency	[% Efficiency]	Expected to be competitive with lithium-ion batteries
Depth of Discharge (DoD)	[% of capacity that can be used safely]	
Integration & Scalability		
	[DC Coupled, AC Coupled,	
Integration Type	Grid-Tied, Off-Grid]	
		Grid-tied, off-grid capable
Scalability	[Can multiple units be combined? Yes/No]	Yes, multiple units can be combined
	· •	Passive cooling, designed to minimize thermal
Thermal Management	Passive]	risks
	-	

Cost & Economic Factors		
	[\$/kWh or \$ per unit]	
	[Maintenance and efficiency loss over time]	Low, due to the absence of expensive metals and minimal safety concerns
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	
Lifetime & Reliability		
Cycle Life	[e.g., 5,000 cycles @ 80% capacity]	
Calendar Life	[Expected lifespan in years]	
Degradation Rate	[% loss per year]	
Warranty	[Years or number of cycles covered]	
Assurances & Certifications		
	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable, non-toxic, low environmental impact
Regulatory Certifications	[UL, IEC, ISO, etc.]	
Track Record & Case Studies		
Past Deployments	[Where has this battery been used?]	Partnering with global energy companies and maritime industry
Project Links	[Case study URLs or application examples]	
Performance in Real-World Applications	[Any known success stories or issues]	Expected to provide safe, cost-effective, and sustainable energy storage

Dattam	Destile
Ratterv	Profile

Battery Profile		
Attribute	Details Description	Details
General Information		
Manufacturer Reviewed by Manufacturer for accuracy	reviewed this document]	Ambri Liquid Metal Battery Ambri FALSE
Year Introduced		2020
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Liquid Metal Battery
	[Describe the electrochemical reaction]	Uses a calcium-based anode, a molten salt electrolyte, and an antimony-based cathode. Relies on high-temperature electrochemical
Physics	[Explain the working mechanism]	reactions to store and release energy efficiently, with self-separating components.
Use Cases	[e.g., Grid Storage, EVs,	
Dhusical Characteristics	Residential, Industrial]	Grid storage, renewable energy integration
Physical Characteristics	[Size of installation /	
Footprint	[Size of installation / space required]	Modular, scalable installations
-	[e.g., 5 kWh to 1 MWh]	Typically deployed in multi-megawatt systems
-	[kg or lbs]	
Performance & Capacity		Designed for long-duration energy storage,
Capacity	[kWh or MWh]	typically in the MWh range
Rate of Charge	[e.g., 1C = full charge in 1 hour]	Optimized for multi-hour charge cycles
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	Suitable for 4- to 24-hour discharge durations
Round-Trip Efficiency	[% Efficiency]	~80%
Depth of Discharge (DoD)	[% of capacity that can be used safely]	High, capable of deep discharge cycles without significant degradation
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	Grid-tied
Scalability	[Can multiple units be combined? Yes/No]	Yes, can be combined in modular units
Thermal Management	[Air-cooled, Liquid-cooled, Passive]	Passive, leveraging high-temperature operation
Cost & Economic Factors		

	[\$/kWh or \$ per unit]	Lower than lithium-ion for long-duration storage (exact pricing varies)
	[Maintenance and efficiency loss over time]	Low maintenance due to solid-state design and lack of complex cooling systems
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	Competitive for long-duration applications
Lifetime & Reliability		
Cycle Life	[e.g., 5,000 cycles @ 80% capacity]	20+ years with minimal degradation
Calendar Life	[Expected lifespan in years]	20+ years
Degradation Rate	[% loss per year]	Very low due to self-healing chemistry
Warranty	[Years or number of cycles covered]	Typically long-term, project-specific
Assurances & Certifications		
Assurances & Certifications	[Thermal runaway	
	prevention, short-circuit	Non-flammable chemistry, resistant to thermal
Safety Features	prevention, short-circuit protection, etc.]	Non-flammable chemistry, resistant to thermal runaway
Safety Features Regulatory Certifications	prevention, short-circuit protection, etc.]	Non-flammable chemistry, resistant to thermal
Safety Features Regulatory Certifications Track Record & Case Studies Past Deployments	prevention, short-circuit protection, etc.] [UL, IEC, ISO, etc.] [Where has this battery been used?]	Non-flammable chemistry, resistant to thermal runaway
Safety Features Regulatory Certifications Track Record & Case Studies Past Deployments	prevention, short-circuit protection, etc.] [UL, IEC, ISO, etc.] [Where has this battery	Non-flammable chemistry, resistant to thermal runaway UL and industry-specific certifications Utility-scale projects in partnership with renewable energy developers Available on Ambri's website and partner project announcements
Safety Features Regulatory Certifications Track Record & Case Studies Past Deployments	prevention, short-circuit protection, etc.] [UL, IEC, ISO, etc.] [Where has this battery been used?] [Case study URLs or application examples]	Non-flammable chemistry, resistant to thermal runaway UL and industry-specific certifications Utility-scale projects in partnership with renewable energy developers Available on Ambri's website and partner project

AREA 51 Consulting, LLC		
Battery Profile		
Attribute	Details Description	Details
General Information		
Battery Name	[Enter Battery Name]	EnerVault Iron-Chromium Redox Flow Battery
Manufacturer	[Company Name]	EnerVault
Reviewed by Manufacturer	[Has the manufacturer	
for accuracy	reviewed this document]	FALSE
2424	[Build America, Buy	
BABA	America Act (2021)	0014
Year Introduced	[Year]	2014
Detter True	[e.g., Sodium-Ion, Iron-Air,	
Battery Type	Flow Battery]	Redox Flow Battery
	[Describe the	
Chemistry	•	Iron-Chromium (Fe-Cr) redox couple
Chemistry	electrochemicarreactionj	Iron-Chronnum (Fe-Cr) redox couple
		Utilizes the reversible oxidation and reduction
	[Explain the working	reactions between iron and chromium ions in
Physics	mechanism]	aqueous electrolytes to store and release energy.
	incontanionij	Grid-scale energy storage, renewable energy
	[e.g., Grid Storage, EVs,	integration, peak shaving, load leveling, backup
Use Cases	Residential, Industrial]	power
Physical Characteristics		
	[Size of installation /	Comparable to shipping containers; specific
Footprint	space required]	dimensions not publicly disclosed
		Systems designed for megawatt-hour scale
Size Range	[e.g., 5 kWh to 1 MWh]	applications
Weight	[kg or lbs]	
Performance & Capacity		
		Demonstrated system with 250 kW output for 4
Capacity	[kWh or MWh]	hours, totaling 1 MWh
	[e.g., 1C = full charge in 1	
Rate of Charge	hour]	Designed for events in addition barge even multiple
Data of Discharge	[e.g., 0.5C = 2-hour	Designed for sustained discharge over multiple
Rate of Discharge	discharge]	hours
Round-Trip Efficiency	[% Efficiency]	Approximately 60%
Depth of Discharge (DoD)	[% of capacity that can be used safely]	
Integration & Scalability	useu salelyj	
integration & Scalability		
	[DC Coupled, AC Coupled,	
Integration Type	Grid-Tied, Off-Grid]	Grid-tied
integration type	[Can multiple units be	Yes, systems can be scaled by increasing
Scalability	combined? Yes/No]	electrolyte volume and stack size
could billey		

		Requires active management due to exothermic
Thermal Management Cost & Economic Factors	Passive]	and endothermic reactions during operation
Initial Cost (\$/kWh)	[\$/kWh or \$ per unit]	
	[Maintenance and	
Operational Cost	efficiency loss over time]	
Levelized Cost of Storage	enciency loss over timej	
(LCOS)	[\$ per kWh over lifetime]	
Lifetime & Reliability		
	[e.g., 5,000 cycles @ 80%	
Cycle Life	capacity]	
	[Expected lifespan in	
Calendar Life	years]	
	, .	Minimal, as the electrolyte does not degrade
Degradation Rate	[% loss per year]	significantly over time
-	[Years or number of cycles	
Warranty	covered]	
Assurances & Certifications		
	[Thermal runaway	Utilizes non-flammable, aqueous electrolytes;
	prevention, short-circuit	operates at ambient temperatures; inherently safe
Safety Features	protection, etc.]	chemistry
Regulatory Certifications	[UL, IEC, ISO, etc.]	
Track Record & Case Studies		
		Turlock, California: 250 kW / 1 MWh system
	[Where has this battery	demonstrated in 2014, integrated with a 150 kW
Past Deployments	been used?]	solar array and a 260 kW irrigation pump
		https://www.greentechmedia.com/articles/read/
	[Case study URLs or	enervault-nears-completion-of-its-first-
Project Links	application examples]	commercial-scale-flow-battery
		Demonstrated capability to store solar energy and
		provide power during peak demand periods.
Performance in Real-World	[Any known success	Validated the feasibility of iron-chromium redox
Applications	stories or issues]	flow batteries for utility-scale energy storage

Battery Profile		
Attribute	Details Description	Details
General Information		
•	[Enter Battery Name] [Company Name] [Has the manufacturer	EnerVenue Energy Storage Vessel EnerVenue
•	reviewed this document] [Build America, Buy	FALSE
Year Introduced Battery Type	leg Sodium-Ion Iron-Air	
Chemistry	[Describe the electrochemical reaction]	Nickel-hydrogen
Physics	mechanism]	
Use Cases	[e.g., Grid Storage, EVs, Residential, Industrial]	
Physical Characteristics		
Footprint	[Size of installation / space required]	
-	[e.g., 5 kWh to 1 MWh] [kg or lbs]	
Performance & Capacity	[]	
	[kWh or MWh]	
Rate of Charge	[e.g., 1C = full charge in 1 hour]	
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	
Round-Trip Efficiency Depth of Discharge (DoD)	[% Efficiency] [% of capacity that can be	
	used safely]	
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	
Scalability	[Can multiple units be combined? Yes/No]	
Thermal Management Cost & Economic Factors	[Air-cooled, Liquid-cooled, Passive]	
	[\$/kWh or \$ per unit]	
Operational Cost	Maintenance and	

Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]
Lifetime & Reliability	
	[e.g., 5,000 cycles @ 80% capacity]
Calendar Life	[Expected lifespan in years]
Degradation Rate	[% loss per year]
Warranty	[Years or number of cycles covered]
Assurances & Certifications	
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]
Regulatory Certifications	[UL, IEC, ISO, etc.]
Track Record & Case Studies	
Past Deployments	[Where has this battery been used?]
Project Links	[Case study URLs or application examples]
Performance in Real-World Applications	[Any known success stories or issues]

Battery Profile		
Attribute	Details Description	Details
General Information		
Battery Name	[Enter Battery Name]	Eos Z3
Manufacturer	[Company Name]	Eos Energy Enterprises
Reviewed by Manufacturer	[Has the manufacturer	FALSE
for accuracy	reviewed this document]	
BABA	[Build America, Buy America Act (2021)	Over 80% of materials sourced domestically, with plans to reach nearly 100% U.S. sourcing in the future.
Year Introduced	[Year]	2023
Detter Ture	[e.g., Sodium-Ion, Iron-Air,	
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Zinc Hybrid Cathode Battery
		Utilizes a proprietary aqueous electrolyte
Chemistry	[Describe the	composed of water, halides, additives, and
enemistry	electrochemical reaction]	buffering agents to enhance zinc solubility and
		plating.
	(Euclain the consultion	Features non-degradable bipolar electrodes made
Physics	[Explain the working mechanism]	of conductive plastic anodes and carbon-felt cathodes, simplifying internal connections to
	mechanismj	reduce resistance and improve efficiency.
		Designed for 3- to 12-hour discharge duration
Use Cases	[e.g., Grid Storage, EVs,	applications, suitable for utility, industrial, and
	Residential, Industrial]	commercial energy storage needs.
Physical Characteristics		
	[Size of installation /	Each Eos Cube, containing 672 Z3 battery
Footprint	space required]	modules, is housed in a standard 8 x 16-foot
	space required]	outdoor-rated shipping container
		Scalable; a single Eos Cube offers 500 kWh
Size Range	[e.g., 5 kWh to 1 MWh]	capacity, with installations ranging from single to
-	-	multiple Cubes based on power and space
Weight	[kg or lbs]	requirements. Approximately 50,000 lbs per Eos Cube.
Performance & Capacity		Approximately 50,000 lbs per Los cube.
		Each Eos Cube provides 500 kWh of energy
Capacity	[kWh or MWh]	storage
Rate of Charge	[e.g., 1C = full charge in 1 hour]	
Rate of Discharge	[e.g., 0.5C = 2-hour	
hate of Discharge	discharge]	Designed for 3- to 12-hour discharge durations.
Round-Trip Efficiency	[% Efficiency]	Utilizes simple forced-air ventilation, consuming
		approximately 2% of delivered energy, compared to 7% for traditional lithium-ion systems.

Depth of Discharge (DoD)	[% of capacity that can be used safely]	Retains over 91% of rated capacity over the product lifespan.
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	Suitable for both behind-the-meter and front-of- the-meter applications, indicating flexibility in grid- tied and off-grid scenarios.
Scalability	[Can multiple units be combined? Yes/No]	Yes, multiple Eos Cubes can be combined to meet larger energy storage requirements.
Thermal Management	[Air-cooled, Liquid-cooled, Passive]	Employs simple forced-air ventilation; does not require complex HVAC or fire suppression systems.
Cost & Economic Factors		
Initial Cost (\$/kWh)	[\$/kWh or \$ per unit]	Specific cost details are not provided in the available sources.
Operational Cost	[Maintenance and efficiency loss over time]	Lower power needs for ventilation systems result in reduced annual operating expenses compared to traditional lithium-ion installations.
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	Exact figures are not specified, but the use of abundant materials like zinc and simplified system design suggest a competitive LCOS.
Lifetime & Reliability		
Cycle Life	[e.g., 5,000 cycles @ 80% capacity]	Designed for a 15-year life with daily cycling capability
Calendar Life	[Expected lifespan in years]	Expected lifespan of 15 years Retains over 91% of rated capacity over the
Degradation Rate		product lifespan
Warranty	[Years or number of cycles covered]	
Assurances & Certifications		
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable design; does not require active cooling to function
Regulatory Certifications	[UL, IEC, ISO, etc.]	
Track Record & Case Studies		
Past Deployments	[Where has this battery been used?]	Eos has received orders totaling 1.5 GWh for its zinc battery storage technology, indicating significant market adoption
Project Links	[Case study URLs or application examples]	
Performance in Real-World Applications	[Any known success stories or issues]	Eos's zinc-powered energy storage solutions are commercially proven and manufactured in the USA, overcoming limitations of conventional lithium-ion batteries in 3- to 12-hour intraday applications

D	D (*1 .
Rattory	Protilo

Battery Profile		
Attribute	Details Description	Details
General Information		
•	[Enter Battery Name]	ESS Iron Flow Battery
	[Company Name]	ESS Inc.
Reviewed by Manufacturer	-	FALSE
for accuracy	reviewed this document]	
BABA	[Build America, Buy America Act (2021)	
Year Introduced	[Year]	2011
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Flow Battery
Chemistry	[Describe the electrochemical reaction]	Iron-Redox Chemistry – Uses iron, salt, and water for electrochemical reactions
Physics	[Explain the working mechanism]	Operates by circulating an electrolyte solution through a cell stack, facilitating reversible oxidation and reduction of iron, storing and discharging energy.
Use Cases	[e.g., Grid Storage, EVs, Residential, Industrial]	Grid Storage, Long-Duration Energy Storage, Industrial Applications
Physical Characteristics		
Footprint	[Size of installation / space required]	Modular and scalable; typically containerized solutions
Size Range	[e.g., 5 kWh to 1 MWh]	50 kW / 400 kWh per module, scalable up to multi-megawatt systems
_	[kg or lbs]	Varies by system size; approximately 12,000 lbs for a 400 kWh module
Performance & Capacity	..	
Capacity	[kWh or MWh]	400 kWh per unit, scalable
Rate of Charge	[e.g., 1C = full charge in 1 hour]	~6-8 hours for full charge
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	Can discharge for 4-12 hours depending on configuration
Round-Trip Efficiency	[% Efficiency]	~70-75%
Depth of Discharge (DoD)	[% of capacity that can be used safely]	100%
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	AC Coupled, Grid-Tied
Scalability	[Can multiple units be combined? Yes/No]	Yes, multiple units can be combined
Thermal Management	[Air-cooled, Liquid-cooled, Passive]	Passive cooling with minimal HVAC needs

Cost & Economic Factors		
	[\$/kWh or \$ per unit]	Competitive with other long-duration storage options
Operational Cost	[Maintenance and efficiency loss over time]	Low maintenance due to non-degrading electrolyte
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	Lower than lithium-ion for long-duration applications
Lifetime & Reliability		
Cycle Life	[e.g., 5,000 cycles @ 80% capacity]	Unlimited cycling capability due to non-degrading electrolyte
Calendar Life	[Expected lifespan in years]	20+ years
Degradation Rate	[% loss per year]	Negligible
Warranty	[Years or number of cycles covered]	Typically 20 years
Assurances & Certifications		
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable, non-toxic electrolyte, no risk of thermal runaway
Regulatory Certifications	•	UL 9540, UL 1973, IEC compliance
Track Record & Case Studies		
Past Deployments	been used?	Deployed in multiple utility-scale projects in the U.S. and worldwide
Project Links	[Case study URLs or application examples]	https://www.essinc.com/case-studies/
Performance in Real-World Applications	[Any known success stories or issues]	Proven long-duration energy storage for renewable integration, peak shifting, and microgrids.

Battery Profile		
Attribute	Details Description	Details
General Information		
Battery Name	[Enter Battery Name]	Form Energy Battery
Manufacturer	[Company Name]	Form Energy
Reviewed by Manufacturer	[Has the manufacturer	
for accuracy	reviewed this document]	FALSE
BABA	[Build America, Buy	
	America Act (2021)	Yes
Year Introduced		2021
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Iron Air Pattony
	FIOW Dattery	Iron-Air Battery
Chemistry	[Describe the	
	electrochemical reaction]	Iron oxidation and reduction chemistry
	[Explain the working	Stores and releases energy by rusting and
Physics	mechanism]	unrusting iron
	[e.g., Grid Storage, EVs,	Long-duration energy storage for grid-scale
Use Cases	Residential, Industrial]	applications
Physical Characteristics		
Footprint	[Size of installation /	
	space required]	Large-scale industrial installations
-	[e.g., 5 kWh to 1 MWh]	Megawatt-hour (MWh) scale
-	[kg or lbs]	Heavy due to iron-based chemistry
Performance & Capacity	•	
Capacity	[kWh or MWh]	100+ hours of storage
Rate of Charge	[e.g., 1C = full charge in 1	Optimized for slow charge cycles
	hour] $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	Optimized for slow discharge over multiple
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	days
Round-Trip Efficiency	-	~80-90%
	[% of capacity that can be	
Depth of Discharge (DoD)	used safely]	Designed for deep discharge (~100% DoD)
Integration & Scalability	,,	
	[DC Coupled, AC Coupled,	•
Integration Type	Grid-Tied, Off-Grid]	
		Grid-tied, renewable energy integration
Scalability	[Can multiple units be	11 bl - seelable for setting a sector
,	combined? Yes/Noj	Highly scalable for grid expansion
Thermal Management	[Air-cooled, Liquid-cooled, Passive]	Air-cooled passive system
Cost & Economic Factors	rassivej	
	[\$/kWh or \$ per unit]	Estimated at <\$20/kWh

Operational Cost	[Maintenance and efficiency loss over time]	Minimal operational cost due to iron-based chemistry
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	Ultra-low LCOS due to longevity
Lifetime & Reliability		
	[e.g., 5,000 cycles @ 80% capacity]	10,000+ cycles
Calendar Life	[Expected lifespan in years]	20+ years
Degradation Rate	[% loss per year]	<1% per year
Warranty	[Years or number of cycles covered]	10-year manufacturer warranty
Assurances & Certifications		
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable, no thermal runaway, environmentally friendly materials
Regulatory Certifications	[UL, IEC, ISO, etc.]	UL, DOE-backed research approvals in progress
Track Record & Case Studies		
Past Deployments	[Where has this battery been used?]	Pilot projects with multiple utilities
Project Links	[Case study URLs or application examples]	Form Energy Projects
Performance in Real-World Applications	[Any known success stories or issues]	https://formenergy.com/great-river-energy- and-form-energy-break-ground-on-first-of-its- kind-multi-day-energy-storage-project/

Ratte	rv	Dre	sfil	
Бане	Pr V	211		

Battery Profile		
Attribute	Details Description	Details
General Information		
•	[Enter Battery Name]	Natron Energy Battery
	[Company Name]	Natron Energy
Reviewed by Manufacturer	reviewed this document]	FALSE
BABA	[Build America, Buy America Act (2021)	TRUE
Year Introduced		2024
Dattan (Tuna	[e.g., Sodium-Ion, Iron-Air,	
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Sodium-Ion
Chemistry	[Describe the electrochemical reaction]	Utilizes Prussian blue analogues for both
		cathode and anode with an aqueous electrolyte Sodium ions intercalate into Prussian blue
	[Explain the working mechanism]	crystal structures during charge and discharge cycles
Use Cases	[e.g., Grid Storage, EVs, Residential, Industrial]	Designed for critical power applications, including data centers and industrial settings
Physical Characteristics		
Footprint	[Size of installation / space required]	Standard rack-mounted design compatible with existing infrastructure
Size Range	[e.g., 5 kWh to 1 MWh]	Specific capacity details not provided; designed for scalability
Weight	[kg or lbs]	Not specified
Performance & Capacity		
Capacity	[kWh or MWh]	Specific capacity details not provided; designed for critical power applications
Rate of Charge	nourj	Full recharge in 15 minutes or less
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	Optimal discharge time of 2-5 minutes
Round-Trip Efficiency	[% Efficiency]	Greater than 97%
Depth of Discharge (DoD)	[% of capacity that can be used safely]	
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	Compatible with systems ranging from 48V to 480V
Scalability	[Can multiple units be combined? Yes/No]	Yes, multiple units can be combined for increased capacity
Thermal Management	[Air-cooled, Liquid-cooled, Passive]	Not specified; however, the battery is rated nonflammable at the cell level with no thermal runaway under any condition

Cost & Economic Factors		
Initial Cost (\$/kWh)	[\$/kWh or \$ per unit]	
Operational Cost	[Maintenance and efficiency loss over time]	
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	
Lifetime & Reliability		
Cycle Life	[e.g., 5,000 cycles @ 80% capacity]	More than 50,000 deep discharge cycles
Calendar Life	[Expected lifespan in years]	
Degradation Rate	[% loss per year]	
Warranty	[Years or number of cycles covered]	
Assurances & Certifications		
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]	Rated nonflammable at the cell level with no thermal runaway under any condition
Regulatory Certifications	[UL, IEC, ISO, etc.]	Achieved UL 1973 safety standard for energy storage systems
Track Record & Case Studies		
Past Deployments	[Where has this battery been used?]	Commercial production began in Holland, Michigan, in April 2024
Project Links	[Case study URLs or application examples]	
Performance in Real-World Applications	[Any known success stories or issues]	

AREA 51 Consulting, LLC			
Battery Profile			
Attribute	Details Description	Details	
General Information			
	[Enter Battery Name]	PolyJoule Battery	
	[Company Name]	PolyJoule	
ВАВА	[Build America, Buy America Act (2021)		
		TRUE	
Reviewed by Manufacturer		FALSE	
•	reviewed this document]	FALSE	
Year Introduced	[rear]	2019	
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Carbon-Based Battery	
Chemistry	[Describe the		
Chemistry	electrochemical reaction]	Conductive polymer-based electrolyte	
	[Explain the working	Electrochemical storage via carbon-polymer	
Physics	[Explain the working mechanism]	interactions	
	[e.g. Grid Storage EV/s	Grid storage, backup power, industrial	
Use Cases	[e.g., Grid Storage, EVs, Residential, Industrial]	applications	
Physical Characteristics	nesidential, maastrialj		
	[Size of installation /		
Footprint	space required]	Compact, scalable modules	
Size Range	[e.g., 5 kWh to 1 MWh]	Flexible size configurations	
		Lightweight compared to metal-based	
Weight	[kg or lbs]	batteries	
Performance & Capacity			
Capacity	[kWh or MWh]	10 kWh - 1 MWh	
Rate of Charge	[e.g., 1C = full charge in 1 hour]	Fast charging capability (~15 min for some applications)	
	[e.g., 0.5C = 2-hour		
Rate of Discharge	discharge]	High discharge rates (~10C)	
Round-Trip Efficiency		98%	
Depth of Discharge (DoD)	[% of capacity that can be used safely]	95% DoD supported	
Integration & Scalability			
	[DC Coupled, AC Coupled,		
Integration Type	Grid-Tied, Off-Grid]	DC 9 AC Courding	
		DC & AC Coupling	
Scalability	[Can multiple units be	Highly scalable	
	combined? Yes/No] [Air-cooled, Liquid-cooled,	Highly scalable	
Thermal Management	Passive]	Passive cooling, no liquid components	
Cost & Economic Factors			
	[\$/kWh or \$ per unit]	\$100-\$150/kWh (estimated)	

Operational Cost	[Maintenance and efficiency loss over time]	Low maintenance, minimal operational costs
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	Competitive LCOS due to long cycle life
Lifetime & Reliability		
	[e.g., 5,000 cycles @ 80% capacity]	20,000+ cycles @ 80% capacity
Calendar Life	[Expected lifespan in years]	20+ years
Degradation Rate	[% loss per year]	<1% per year
Warranty	[Years or number of cycles covered]	10-year standard warranty
Assurances & Certifications		
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable, no thermal runaway, no hazardous materials
Regulatory Certifications	[UL, IEC, ISO, etc.]	UL, IEC certifications in progress
Track Record & Case Studies		
Past Deployments	[Where has this battery been used?]	Tested in microgrid environments and industrial backup applications
Project Links	[Case study URLs or application examples]	https://www.polyjoule.com/about
Performance in Real-World	-	High efficiency in real-world tests; scalable
Applications	stories or issues]	and low maintenance

Battory	Drafila	

Battery Profile		
Attribute	Details Description	Details
General Information		
•	[Enter Battery Name] [Company Name]	Quino Flow Battery Quino Energy
Reviewed by Manufacturer		FALSE
for accuracy	reviewed this document]	
BABA	America Act (2021)	
Year Introduced		
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	
Chemistry	[Describe the electrochemical reaction]	Organic Aqueous Flow Battery – utilizes quinone- based electrolytes in an aqueous solution for energy storage.
Physics	[Explain the working mechanism]	The battery functions by storing energy in liquid electrolytes containing quinones, which undergo reversible redox reactions to charge and discharge energy. The separation of power and energy components allows for independent scaling and long-duration storage.
Use Cases	[e.g., Grid Storage, EVs, Residential, Industrial]	Grid Storage, Commercial & Industrial Energy Storage, Microgrids, Renewable Integration
Physical Characteristics		
Footprint	[Size of installation / space required]	Modular design; varies based on system configuration
Size Range	[e.g., 5 kWh to 1 MWh]	Scalable, from kWh to MWh-scale
Weight	[kg or lbs]	Depends on electrolyte storage volume
Performance & Capacity		
Capacity	[kWh or MWh]	Modular; dependent on tank size
Rate of Charge	[e.g., 1C = full charge in 1 hour]	Typically slower than lithium-ion (customizable)
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	Configurable based on electrolyte flow rate
Round-Trip Efficiency		~70-80%
Depth of Discharge (DoD)	[% of capacity that can be used safely]	100% (as flow batteries can fully deplete electrolytes without damage)
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	Grid-Tied, AC Coupled

Scalability [Can multiple units be combined? Yes/No]

Yes, highly modular

Thermal Management	[Air-cooled, Liquid-cooled, Passive]	Passive or minimal active cooling required
Cost & Economic Factors		
Initial Cost (\$/kWh)	[\$/kWh or \$ per unit]	Expected to be lower than lithium-ion but depends on deployment scale
Operational Cost	[Maintenance and efficiency loss over time]	Lower maintenance than lithium-ion; electrolyte replacement required over time
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	Projected to be competitive for long-duration storage
Lifetime & Reliability		
	[e.g., 5,000 cycles @ 80% capacity]	10,000+ cycles
Calendar Life	[Expected lifespan in years]	20+ years
Degradation Rate	[% loss per year]	Minimal compared to lithium-ion
Warranty	[Years or number of cycles covered]	Typically long due to stable chemistry
Assurances & Certifications		
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable aqueous electrolyte, no thermal runaway risk
Regulatory Certifications	[UL, IEC, ISO, etc.]	
Track Record & Case Studies		
Past Deployments	[Where has this battery been used?]	Early-stage commercialization, pilot projects underway
Project Links	[Case study URLs or application examples]	
Performance in Real-World Applications	[Any known success stories or issues]	

Batterv	Protile	

Battery Profile		
Attribute	Details Description	Details
General Information		
-	[Enter Battery Name]	Ohm Core Home Battery
	[Company Name]	Urban Electric Power
Reviewed by Manufacturer	-	FALSE
	reviewed this document]	
BABA	[Build America, Buy America Act (2021)	TRUE
Year Introduced	[Year]	2022
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Rechargeable Alkaline Zinc Manganese Dioxide
Chemistry	[Describe the electrochemical reaction]	Utilizes zinc anode and manganese dioxide cathode in an alkaline electrolyte, enabling rechargeable capabilities
Physics	[Explain the working mechanism]	During discharge, zinc oxidizes at the anode, and manganese dioxide reduces at the cathode; the process is reversed during charging
Use Cases	[e.g., Grid Storage, EVs, Residential, Industrial]	Residential energy storage, backup power, integration with renewable energy sources
Physical Characteristics		
Footprint	[Size of installation / space required]	Compact, floor or wall-mounted design suitable for indoor installations
Size Range	[e.g., 5 kWh to 1 MWh]	8.8 kWh per unit
Weight	[kg or lbs]	395 lbs (179 kg)
Performance & Capacity		
Capacity	[kWh or MWh]	8.8 kWh
Rate of Charge	[e.g., 1C = full charge in 1 hour]	Specific charge rate not specified; designed for standard residential charging scenarios
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	1.5 kW continuous, 2 kW peak
Round-Trip Efficiency	[% Efficiency]	Approximately 87%
Depth of Discharge (DoD)	[% of capacity that can be used safely]	
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	AC-coupled; compatible with 120/240V systems
Scalability	[Can multiple units be combined? Yes/No]	Yes, multiple units can be combined for increased capacity
Thermal Management	[Air-cooled, Liquid-cooled, Passive]	Passive; operates within -20°C to 60°C without active cooling
Cost & Economic Factors		
Initial Cost (\$/kWh)	[\$/kWh or \$ per unit]	

Operational Cost	[Maintenance and efficiency loss over time]	Minimal maintenance required; designed for long-term reliability
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	
Lifetime & Reliability		
Cycle Life	[e.g., 5,000 cycles @ 80% capacity]	Specific cycle life not detailed; designed for long-term use
Calendar Life	[Expected lifespan in years]	Expected lifespan upwards of 10 years
Degradation Rate	[% loss per year]	
Warranty	[Years or number of cycles covered]	
Assurances & Certifications		
,	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable materials; safe for indoor installation without additional safety systems
Regulatory Certifications	[UL, IEC, ISO, etc.]	UL1973 / UL9540A
Track Record & Case Studies		
Past Deployments	[Where has this battery been used?]	Technology tested and proven in data centers and grid infrastructure projects, including installations for Con Edison in New York and the Tennessee Valley Authority
Performance in Real-World	[Case study URLs or application examples] [Any known success stories or issues]	urbanelectricpower.com Demonstrated reliability and safety in various commercial and residential settings

Battery Profile		
Attribute	Details Description	Details
General Information		
Battery Name	[Enter Battery Name]	ViZn Flow Battery
	[Company Name]	ViZn Energy Systems
Reviewed by Manufacturer	-	FALSE
for accuracy	reviewed this document]	
BABA	[Build America, Buy	
Voor Introduced	America Act (2021)	TRUE
Year Introduced	le a Sodium-lon Iron-Air	
Battery Type	[e.g., Sodium-Ion, Iron-Air, Flow Battery]	Flow Battery
	now battery	Zinc-Iron Redox Flow Battery – utilizes a non-
	[Describe the	toxic, non-flammable electrolyte solution where
Chemistry	electrochemical reaction]	zinc and iron electrochemical reactions store and
		release energy.
		The battery works by pumping liquid electrolytes
	[Evaluin the working	through electrochemical cells, where zinc is
Physics	[Explain the working mechanism]	plated and dissolved during charging and
		discharging, respectively. The separation of
		power and energy components allows for
		independent scaling and long-duration storage.
Use Cases	[e.g., Grid Storage, EVs,	Grid Storage, Commercial & Industrial Energy
Physical Characteristics	Residential, Industrial]	Storage, Microgrids, Renewable Integration
Physical Characteristics	[Size of installation /	Modular design; varies based on system
Footprint	space required]	configuration
Size Range	[e.g., 5 kWh to 1 MWh]	Scalable from 100 kWh to multiple MWh
	[kg or lbs]	Dependent on system size and installation
Performance & Capacity		
	[kWh or MWh]	Configurable, typically in the range of hundreds of kWh to multi-MWh
Rate of Charge	[e.g., 1C = full charge in 1	
	hour]	Typically around 4-6 hours for full charge
Rate of Discharge	[e.g., 0.5C = 2-hour	Configurable, designed for long-duration
	dischargej	discharge (4-10+ hours)
Round-Trip Efficiency		~70-75%
Depth of Discharge (DoD)	[% of capacity that can be used safely]	100%
Integration & Scalability	·	

Integration Type [DC Coupled, AC Coupled, Grid-Tied, Off-Grid]

Grid-Tied, DC Coupled, AC Coupled

Scalability Thermal Management	[Can multiple units be combined? Yes/No] [Air-cooled, Liquid-cooled,	Yes, multiple units can be combined for large- scale deployments
-	Passive]	Passive and liquid-cooled options available
Cost & Economic Factors		
Initial Cost (\$/kWh)	[\$/kWh or \$ per unit]	Estimated lower than lithium-ion for long- duration applications
Operational Cost	[Maintenance and efficiency loss over time]	Low; minimal degradation, low maintenance due to non-corrosive chemistry
Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]	Competitive for long-duration storage, with a focus on reduced total cost of ownership over time
Lifetime & Reliability		
	[e.g., 5,000 cycles @ 80% capacity]	20,000+ cycles
Calendar Life	[Expected lifespan in years]	20+ years
Degradation Rate	[% loss per year]	Minimal (near-zero capacity fade over lifetime)
Warranty	[Years or number of cycles covered]	10-20 years depending on the application
Assurances & Certifications		
Safety Features	[Thermal runaway prevention, short-circuit protection, etc.]	Non-flammable, non-toxic electrolyte; no risk of thermal runaway
Regulatory Certifications	[UL, IEC, ISO, etc.]	UL, IEC compliance (specific certifications to be confirmed)
Track Record & Case Studies		
Past Deployments	peen used?	Various commercial and industrial projects in North America and Europe
	[Case study URLs or application examples]	
Performance in Real-World Applications	[Any known success stories or issues]	

Utility-scale battery storage systems are increasingly deployed to enhance grid reliability, integrate renewable energy, and provide ancillary services. The most common types are:

1. Lithium-Ion Batteries

Overview: By far the most widely used for utility-scale applications.

Advantages:

High energy density.

Fast response times.

Long cycle life (thousands of charge/discharge cycles).

Scalability and flexibility for various applications, including energy shifting and frequency regulation.

Limitations:

Cost (though prices are declining).

Safety concerns (thermal runaway risk).

Environmental concerns regarding mining and recycling.

Applications: Renewable energy integration, frequency regulation, and peak shaving.

2. Flow Batteries

Types:

Vanadium Redox Flow Batteries (VRFB).

Zinc-Bromine Flow Batteries.

Advantages:

Long-duration storage (4–12 hours or more).

Decoupled energy and power capacity (can store large amounts of energy without increasing power output).

Excellent cycle life and durability.

Limitations:

Lower energy density than lithium-ion.

Higher upfront cost.

Complexity of system (requires pumps and tanks for electrolyte circulation).

Applications: Long-duration storage, grid resiliency, and renewable energy firming.

3. Sodium-Based Batteries

Types:

Sodium-Sulfur (NaS).

Sodium-Nickel Chloride (ZEBRA).

Advantages:

High energy capacity and long duration (up to 6–8 hours).

Tolerance to extreme temperatures.

Materials are more abundant and less environmentally impactful than lithium.

Limitations:

High operating temperatures (300–350°C).

Slower response compared to lithium-ion.

Applications: Grid-scale applications requiring steady discharge over long durations.

4. Lead-Acid Batteries

Overview: A mature technology, traditionally used in smaller applications but occasionally deployed at utility scale.

Advantages:

Low upfront cost.

Simple manufacturing process.

Recyclable (over 90% of lead in batteries is recyclable).

Limitations:

Shorter cycle life.

Lower energy density.

Regular maintenance requirements.

Applications: Backup power and limited-duration grid applications.

5. Nickel-Based Batteries

Types:

Nickel-Cadmium (NiCd).

Nickel-Metal Hydride (NiMH).

Advantages:

Tolerance to extreme conditions.

Long lifecycle.

Limitations:

High cost.

Cadmium toxicity (environmental concerns for NiCd).

Applications: Specialty applications in remote or harsh environments.

6. Solid-State Batteries

Overview: Emerging technology, still in early deployment stages for utility-scale.

Advantages:

Higher energy density and safety compared to lithium-ion (no liquid electrolytes). Potential for lower costs in the long term.

Limitations:

Still in development, not widely commercially available.

Scalability challenges.

Applications: Next-generation energy storage systems.

7. Hydrogen Storage (Fuel Cells)

Overview: Electrolyzers produce hydrogen stored for conversion back to electricity using fuel cells.

Advantages:

Very long-duration storage potential (days to months).

Scalable for large projects.

Limitations:

Low round-trip efficiency (30-50%).

High cost of electrolyzers and storage infrastructure.

Applications: Seasonal energy storage, balancing renewable energy over long periods.

8. Flywheels

Overview: Store energy as rotational kinetic energy.

Advantages:

Extremely fast response times.

High durability and lifespan (millions of cycles).

No degradation over time.

Limitations:

Limited energy storage capacity.

High upfront costs.

Applications: Frequency regulation, short-term power stabilization.

Battery Glossary

General Information

Battery Name: The specific name or model of the battery technology.

Manufacturer: The company or entity responsible for producing the battery.

BABA (Build America, Buy America Act): A U.S. federal requirement that infrastructure projects use American-made materials, including domestically manufactured batteries.

Year Introduced: The year the battery technology was first commercialized or made available for use.

Battery Type: The classification of the battery based on its electrochemical composition (e.g., lithiumion, sodium-ion, flow battery).

Chemistry: The specific materials and chemical reactions that store and release energy within the battery.

Physics: The underlying principles governing the battery's function, such as ion movement, phase changes, or redox reactions.

Use Cases: The primary applications for the battery, such as grid storage, electric vehicles, residential power backup, or industrial energy storage.

Physical Characteristics

Footprint: The physical space the battery system occupies when installed.

Size Range: The range of available sizes or configurations for the battery system.

Weight: The total mass of the battery, which affects transportability and installation considerations.

Performance & Capacity

Capacity: The amount of energy a battery can store, typically measured in kilowatt-hours (kWh) or megawatt-hours (MWh).

Rate of Charge: The speed at which a battery can be charged, often expressed as a C-rate (e.g., 1C = full charge in 1 hour).

Rate of Discharge: The speed at which a battery releases stored energy, also expressed in C-rate or kW output.

Round-Trip Efficiency: The percentage of energy retained after a complete charge and discharge cycle, considering energy losses due to heat and resistance.

Depth of Discharge (DoD): The percentage of total capacity that can be used without causing significant degradation of the battery.

Integration & Scalability

Integration Type: How the battery connects to the electrical system (e.g., DC-coupled, AC-coupled, grid-tied, off-grid).

Scalability: The ability to expand the battery system by adding more units or modules to increase storage capacity.

Thermal Management: The cooling or heating systems used to maintain battery performance and longevity (e.g., air-cooled, liquid-cooled, passive cooling).

Cost & Economic Factors

Initial Cost (\$/kWh): The upfront cost of purchasing and installing the battery, measured per unit of stored energy.

Operational Cost: The ongoing expenses related to maintenance, energy loss, and system management.

Levelized Cost of Storage (LCOS): The total cost per kWh over the battery's lifetime, including initial investment, maintenance, and efficiency losses.

Lifetime & Reliability

Cycle Life: The number of charge-discharge cycles a battery can undergo before its capacity significantly degrades.

Calendar Life: The total lifespan of the battery in years, regardless of cycle count.

Degradation Rate: The rate at which a battery loses capacity over time, typically expressed as a percentage per year.

Warranty: The manufacturer's guarantee on performance, cycle life, and longevity, typically covering a set number of years or cycles.

Assurances & Certifications

Safety Features: Built-in protections against overheating, overcharging, and short circuits to ensure safe operation.

Regulatory Certifications: Compliance with industry and government safety standards (e.g., UL, IEC, ISO certifications).

Track Record & Case Studies

Past Deployments: Examples of real-world installations where the battery has been used.

Project Links: Online resources providing details about completed battery projects and their performance.

Performance in Real-World Applications: Data and case studies showing how the battery performs in practical scenarios, including efficiency, reliability, and maintenance requirements.

Battery Profile Template

Attribute	Details Description	Details
General Information		
Manufacturer Reviewed by Manufacturer	reviewed this document] [Build America, Buy America Act (2021) [Year] [e.g. Sodium-Ion, Iron-Air	FALSE
Chemistry	electrochemical reaction]	
Physics	[Explain the working mechanism]	
Use Cases	[e.g., Grid Storage, EVs, Residential, Industrial]	
Physical Characteristics		
Footprint	[Size of installation / space required]	
	[e.g., 5 kWh to 1 MWh] [kg or lbs]	
Performance & Capacity		
Capacity	[kWh or MWh]	
Rate of Charge	nour	
Rate of Discharge	[e.g., 0.5C = 2-hour discharge]	
Round-Trip Efficiency		
Depth of Discharge (DoD)	[% of capacity that can be used safely]	
Integration & Scalability		
Integration Type	[DC Coupled, AC Coupled, Grid-Tied, Off-Grid]	
Scalability	[Can multiple units be combined? Yes/No]	
Thermal Management	[Air-cooled, Liquid-cooled, Passive]	
Cost & Economic Factors Initial Cost (\$/kWh) Operational Cost	[\$/kWh or \$ per unit] [Maintenance and	

Levelized Cost of Storage (LCOS)	[\$ per kWh over lifetime]
Lifetime & Reliability	
	[e.g., 5,000 cycles @ 80% capacity]
Calendar Life	[Expected lifespan in years]
Degradation Rate	[% loss per year]
Warranty	[Years or number of cycles
	covered]
Assurances & Certifications	
	[Thermal runaway
Safety Features	prevention, short-circuit
	protection, etc.]
Regulatory Certifications	[UL, IEC, ISO, etc.]
Track Record & Case Studies	
Past Deployments	[Where has this battery
	been used?]
Project Links	[Case study URLs or application examples]
FT0ject Links	application examples]
Performance in Real-World	[Any known success
Applications	stories or issues]